Özet: “Evren Nedir? Evren Ne Demektir? Anlamı” başlıklı yazımızda Evren nedir, Evren ne demektir, Evren kelimesinin tanımı, Evren kelimesinin eş anlamlısı, Evren kelimesinin ingilizce karşılıkları, Evren ile ilgili atasözleri ve deyimler ve Evren hakkında detaylı bilgileri bulacaksınız.
Evren Tanımı
Evren kelimesinin anlamı Türk Dil Kurumu (TDK) sözlüğünde aşağıdaki şekildedir;
1. isim, gök bilimi Gök varlıklarının bütünü, kâinat, cihan, âlem, kozmos
“Evrende milyonlarca galaksi, her galakside milyonlarca güneş var.” – A. Boysan
2. Düzenli ve uyumlu bir bütün olarak düşünülen bütün varlıklar
“Yemeyi, içmeyi, konuşmayı, düşmanlarımı, dostlarımı, orta malı hislerimi ve evreni unuttum.” – R. H. Karay
3. Büyük yılan
4. Kişinin içinde yaşadığı, ilişkide bulunduğu ortam
“Kendi evrenine dalmış olan Halim ürkerek sıçradı, bir adım geriye attı.” – A. İlhan
Evren Eş Anlamlısı ve Zıt Anlamlısı
Evren kelimesini eş anlamlı karşılığı aşağıdaki gibidir;
- Evren – kozmos / âlem / cihan / kâinat
Evren kelimesini zıt anlamlı karşılığı aşağıdaki gibidir;
- Evren kelimesinin zıt anlamlı karşılığı bulunmamaktadır.
Evren İle İlgili Atasözleri ve Deyimler
Evren kelimesi ile ilgili atasözü ve deyimler aşağıdaki gibidir;
- Evren kelimesinin geçtiği herhangi bir atasözü veya deyim bulunamamıştır.
Evren İle İlgili Birleşik Sözler
Evren kelimesi ile ilgili birleşik sözler aşağıdaki gibidir;
- evren bilimi
- evren doğumu
- evren pulu
Evren İngilizcesi
Evren kelimesinin İngilizce karşılıkları ise aşağıdaki gibidir
- Evren – universe
Evren Hakkında Detaylı Bilgi
Evren ya da kâinat, uzay ve uzayda bulunan tüm madde ve enerji biçimlerini içeren bütünün adıdır. Pozitif bilimler açısından evren, gök cisimlerini barındıran uzay ve uzayda yer alan her şeyintoplamıdır. Dolayısıyla modern fizik açısından evren, sonsuz boşluk ve bu boşlukta yer alıp da var olduğunu bildiğimiz bütün atomik âlemlerdir.
Enerji dalga veya partikülleri homojen ve dengeli olarak çözüldüğünde ‘varoluş’ ile ‘antivaroluş’ olamayacağı ya da toplam karşıtları ‘yok oluşta’ ise bir patlama olamayacağından, evren soğuyor mu, ısınıyor mu, evrenin durması sonu mudur, Büyük patlama evrenin merkezi mi, başlangıcı mıdır, başka galaksiler ve hayatlar var mıdır, güneş evrenin merkezinde midir gibi problemler hareket veya başka deyişle zamanın populer sorularını teşkil etmiştir.
Evrenin oluşumuna dair günümüzde en çok benimsenen teori, Bigbang (Büyük Patlama) teorisidir. Bu teoriye göre evren, sıfır hacimli ve çok yüksek bir enerji potansiyeline sahip, sıkışmış bir noktanın patlamasıyla oluştu. İlk patlamanın nasıl oluştuğu, evren meydana gelmeden önce evrenin yerinde ne olduğu ya da evrenin neyin içinde genişlediği sorularına günümüzde bile tam olarak bilimsel bir cevap bulunamamıştır, bununla birlikte evrenöncesi durum, evrendışı varoluş hakkında hipotezler öne sürülmüştür. Büyük Patlama sonucunda altı yöne dağılan gaz molekülleri uzun bir dönem boyunca birbirlerinden bağımsız hareket ettiler. Sürekli genişleyen evrenin her yerinde geçerli olan fizik kurallarından kütleçekimi kanunu vasıtasıyla bağımsız gazlar birleşerek galaksileri (gök adaları) oluşturdular.
Aynı evrensel fizik kanunu neticesinde gökadalar da birbirlerine yaklaşarak devasa gruplar oluşturdu. Galaksiler içinde yıldızlar ve bazı yıldızların çevresinde sistemler oluştu. İçinde yaşadığımız Güneş Sistemi bunlardan birisidir. Keşfedebildiğimiz evrende 400 milyardan fazla galaksi ve 10.1088yıldız olduğu tahmin edilmektedir.
Evren’in Yaşı
Evren’in yaşı, Büyük Patlama’dan günümüze dek geçen zamandır. Şu anki teori ve gözlemler, Evren‘in yaşının 13,5 ile 14 milyar arası olduğunu önermektedir. Bu yaş aralığı birçok bilimsel araştırma projesinin görüş birliğiyle elde edilmiştir. Bu projeler arasında arkaplan ışınımı ölçümlerini ve Evren’in genişlemesinin ölçümü için kullanılan diğer pek çok farklı yöntemi de içerir. Arka plan ışınımı ölçümleri Evren’in Büyük Patlama’dan bu yana olan soğuma süresini verir.
Evrenin Genişlemesi Kuramı
Kutupsal basınçlar sonucu yoğunlaşmış anti madde ile evren halen genişlemektedir. Gök cisimleri, evrenin genişlemesinde, birbirlerine olan uzaklıkları bakımından iki farklı davranış gösterirler. Şayet birden fazla gök cismi birbirlerinin kütleçekimine kapılırlarsa ya da hepsi birden ortak bir kütleçekiminin kuantumuna kapılırlarsa, bu durumda aralarındaki mesafe birbirleriyle yahut da ortak çekimi altına girdikleri kütleyle birleşene kadar her an azalır. Birinci durumun etkili olmadığı diğer bütün durumlarda gök cisimleri birbirinden sürekli uzaklaşırlar. İki gök cismi arası uzaklık daha önce x ışık yılı ise şu anda x+y ışık yılıdır (y>0).
Kozmik fon radyasyonu
Mantıken evren çok yoğun ve sıcak büyük patlama neticesinde genişlerken gökadalar birbirinden homojen hızlarda genişlemeliydi. Uzaktaki yıldız gökadaların daha büyük hızlarla birbirinden uzaklaşması homojen genişlemeyi de doğrular.
O zaman Özel görelik kuramına göre ışık hızı aşılamayacağına göre en uzaktakiler ışık hızından küçük sonlu bir hızla uzaklaşmalıydı. En uzaktaki gökadadan gelen ışık hem en hızlı uzaklaşan hem de en uzak geçmişten gelen ışıktır. En uzak geçmiş ise evrenin oluştuğu zamanlardan gelen ışıktır.
Evren ilk oluştuğunda ışıma serbestçe yayılma fırsatı bulduğunda yani ilk madde öncesi yapıtaşlarının boşluklarından sızabildiği kadarıyla gözlemlenebilmektedir. Uzayda her doğrultuda homojen bir ışıma olmadığı gözlemlenmiştir. Fon ışımasının haritası gözenekli bir yapı sergiler.
Isı ve Hareket Yasası
Evrende tüm madde yapıtaşları atom, iyon, anyon, katyon yoğunlaşmış düzensiz ısı enerjileridir. Tüm maddeler enerjinin bir formudur ve Termodinamik kanunlarına göre işlemektedir. Termodinamiğin üç temel kanunu vardır. Termodinamiğin en basit yasası; Sıfırıncı kanun olarak adlandırılır. Daha basit bir ifadeyle farklı sıcaklıklarda iki cisim ısıl bakımdan temas ederse sıcak olan cisim soğur, soğuk olan cisim ısınır. Sıcaklık, madde içinde atomların titreşmesi ile iletilir. Bu nedenledir ki, ısı akışı sıcak cisimden soğuk cisime doğru gerçekleşir.
Birinci Kanunu, evrende temel olarak enerjinin yok edilemeyeceğini veya yoktan var olamayacağını söyler. Enerji sadece bir şekilden diğerine dönüşür. Bunun sonucu olarak geçmişteki bir olgunun gelecekte bire bir tekrarlanmayacağı düşünülür.[kaynak belirtilmeli]
Termodinamik’in bilim dallarına da uygulanabilen İkinci Yasasına göre, ısı enerjisi daha soğuk bir kaynaktan, daha sıcak bir kaynağa enerji vermeden transfer olamaz. Başka bir deyişle, bir sistem kendinden daha soğuk sistemle ısıtılamaz. Sistemlerin bu özelliği Termodinamikçilerin geliştirdiği “entropi” kavramıyla açıklanır.
Isı Devinimi olarak da bilinen Termodinamiğin üçüncü Yasası kısaca: “Eğer mutlak sıfır noktası olan sıfır Kelvin derecesine (yani -273 Santigrat) ye inilirse, bu sıcaklığa inebilen tüm parçacıkların biririne eşit entropileri olur, 0-noktasi enerjisi (zero-point energy) olarak tanımlanır. İşte bu nokta entopinin minimuma gittiği sıfır entropi noktasidir. Bu yasa neden bir maddeyi mutlak sıfıra kadar soğutmanın imkânsız olduğunu belirtir (dinamik bir evrende ısı titreşim alışverişi düzensizliği ve pi sabiti.) Sıcaklık mutlak sıfıra yaklaştıkça bütün hareketler sabitleşir. Sayının sıfır değil de bir sabit olmasının sebebi, bütün hareketler durmasına ve buna bağlı olan belirsizliklerin yok olmasına rağmen kristal olmayan maddelerin moleküler dizilimlerinin farklı olmasından belirsizliğin hala mevcut olmasıdır. Üçüncü yasa sayesinde maddelerin mutlak sıfırdaki entropileri referans alınmak üzere kimyasal tepkimelerin incelenmesinde yararlı olan mutlak entropi tanımlanabilir.
Moleküler Enerjiler
Maddelerin ısınması veya soğuması bir takım zincirleme fiziksel olaydan meydana gelmektedir. Bu olaylar birbirini takip eden zincirleme kazalara benzer. Maddeler soğurken kendinden daha soğuk bir ortamla etkileşime girer. Maddeler ısınırken ise kendinden daha sıcak bir ortamla etkileşime girer. Biz soğumayı ele alalım. Bir maddenin soğuması için kendinden daha soğuk ortamla etkileşir dedik. Bu etkileşim esnasında olan şeyler şunlardan ibarettir: Maddenin tanecikli yapısı , yani moleküler yapıları veya atomik yapıları, soğuk maddeyle çarpışır. Bu çarpışma esnasında daha sıcak olan ve bundan dolayı daha hareketli ve moleküler yapısı daha serbest olan madde, moleküler yapısı daha soğuk olan yani moleküler yapısı daha az serbest olan atoma çarpar ve soğuk maddenin atomunun durgunluğu nedeniyle yavaşlar. Tıpkı koşarken duran bir cisme çarpmak gibi. Diğer soğuk atomu da hızlandırır. Bu olay tüm atomların enerjileri eşitlenene kadar devam eder. Isınma da bu anlatılan olayın tam tersi olur. Isınma da bu sefer soğuk maddeyi sıcak maddenin taneciklerinin hızından dolayı hızlanması yani ısınmasıdır. Sıcak olan ortamın da yavaşlaması yani soğumasıdır. İki anlatılan olay da birbirinin aynısıdır. Bu yüzden donma ve kaynama noktaları birbirine eşittir. Bu yüzden buharlaşma ve yoğuşma noktaları birbirine eşittir.
Özel görelilik kuramı ve uzay-zaman
Evrenin alan ve bir geçici (zaman) olmak üzere en az üç boyutu vardır. Uzun süre mekansal ve zamansal boyutların doğada farklı ve birbirinden bağımsız olduğu düşünülmüştür, ancak özel görelilik kuramı ile , mekansal ve zamansal ayrımların herbir tanesinin hareketi ile (sınırlar içinde) karşılıklı çevrim’ler (interkonvertible) oluştuğu anlaşılmıştır.
Evren Modelleri / Görüşlerin Gelişimi
Yer merkezli Evren; Eskiçağlarda birkaçı dışında bütün astronom ve düşünürler Dünya’nın evrenin merkezi olduğuna, Güneş, Ay veyıldızların Dünya’nın çevresinde döndüğüne inanırlardı. Bu evren modeline göre, yıldızlar kristal bir kürenin iç yüzüne çakılmış gibi durağandı. Buna karşılık Güneş, Ay ve beş “gezegen yıldız” (Merkür, Venüs, Mars, Jüpiter, Satürn) bu durağan yıldızların önünde hareket halindeydi. Bütün gökcisimleri, sanki bir makineyle çalıştırılıyormuşçasına, değişmez bir düzen içinde Dünya’nın çevresinde dolanırdı. Eski astronomlar gezegenlerin bu teorik hareketini, Güneş’in ve yıldızların dünya etrafındaki günlük dolanımını açıklayabilmek için karmaşık evren modelleri geliştirdiler.
Bu eski astronomlar içinde etkisi en uzun süreli olan İskenderiyeli Batlamyus’tur (Klaudios Ptolemaios). M.S. 2. yüzyılda yaşayan bu ünlü bilgin, bugün Almagest adıyla bilinen büyük yapıtında gök cisimlerinin karmaşık hareketini açıklayan evren kuramını ortaya attı ve Dünya’yı evrenin merkezi olarak kabul eden bu kuram yaklaşık 14 asır boyunca Ortaçağ Avrupası’nda tartışmasız benimsendi.
Güneş merkezli Evren; Uzayın uçsuz bucaksız ve karanlık boşluğunda; Güneş’e benzer yıldızlardan oluşmuş bir gökadanın ortasında yüzen günmerkezli Güneş Sistemi düşüncesinin yerleşmeye başlaması ancak 16., 17. ve 18. yüzyıllara rastlar. Mikolaj Kopernik, Galileo Galilei ve Johannes Kepler gibi büyük bilginler, Dünya’nın ve öbür gezegenlerin Güneş’in çevresindeki yörüngelerde dolandığını kanıtladılar.Isaac Newton, bu gezegenleri Güneş’in çevresindeki yörüngelerinde tutan evrensel çekim ( kütleçekim ) kuvvetinin varlığını açıkladı.
Samanyolu ve Galaksiler evreni;18. yüzyılın sonlarında William Herschel ve onu izleyenler de bütün Güneş Sistemi’ni içerenSamanyolu Gökadası’nı incelediler; bulutsu (nebula) adı verilen soluk ışıklı gaz ve toz bulutlarını araştırarak bunlardan çoğunun gerçekte Samanyolu’nun ötesindeki başka gökadalar olduğunu saptadılar.
19. yüzyılın ortalarına doğru astronomları; insanın dış gücünün çok ötesinde, tasarlanamayacak kadar engin bir evren düşüncesine götüren önemli gelişmeler oldu. Evrenin sınırsız boyutlarının ilk somut göstergesi, büyük Alman astronomi bilgin Friedrich Wilhelm Bessel’in ( 1784 – 1846 ) o güne kadar denenmemiş bir yönteme başvurarak 1838’de yaptığı bir uzaklık ölçümüdür. Bessel, ilk kez ıraklık açısından yararlanarak, Güneş ile yakınındaki Kuğu 61 yıldızı arasındaki uzaklığı kesin değerleriyle ölçtü ve inanılması güç bir sonuç buldu. Bu ölçüme göre Kuğu 61 ile Güneş arasındaki mesafe 97 trilyon kilometreden daha fazlaydı (tam olarak 97.432.493.000.000 km). Yakın bir yıldızın bile böylesine şaşırtıcı bir uzaklıkta olması, uzayda yapılacak ölçümlerde kilometreve mil gibi geleneksel ölçü birimlerini kullanmanın ne kadar anlamsız olduğunu açıkça ortaya koymuştu. Bunun üzerine astronomlar, çok hızlı bir maddenin bu uzaklığı ne kadar zamanda alacağını belirtmenin çok daha kolay ve anlamlı bir ölçü birimi olacağına karar verdiler. Saniyede yaklaşık 300.000 km hızla hareket eden bir ışık ışını bir yılda yaklaşık 9.6 trilyon kilometre yol alır. Işık yılı, bugün astronominin temel uzunluk ölçüsü birimidir. Bu ölçü birimine göre Kuğu 61, Güneş’ten 10,3 ışık yılı uzaklıktadır. (Günümüzde yapılan daha duyarlı ölçümler bu uzaklığın 11,2 ışık yılı olduğunu ortaya koymuştur.) Güneş’e en yakın yıldız ise yanlızca 4,3 ışık yılı uzaklıktaki Proxima Centauri’dir (Erboğa takımyıldızından bir yıldız).
- Heat death
- Ultimate fate
- Olası sonuçlar
Çoklu evren; Günümüzde tek bir evren görüşü değişime uğramakta, paralel evrenler, çoklu evrenler (köpük modeli) gibi modeller üzerinde durulmakta ve buna ait yeni kanıtlar ortaya konmaktadır.
Evren’in Sonu
1. Açılıp kapanan Büyük Çöküş evren teorisine göre evrenin itme gücü bitince çekme gücü başlayacak ve böylece büzüşecek, gök cisimleri çarpışarak kaynaşacak ve büyük bir patlamayla evren tekrar genişlemeye başlayacaktır. Gold Evreni olarak bilinen bu modelde, evren Büyük Patlama ile başlar sonra yükselen entropi ve zamanın termodinamik oku genişlemeyi işaret eder, Evren, çok düşük yoğunluğa ulaşınca çekilmeye başlar. Böylelikle entropi çok fazla alçalır ve zamanın termodinamik oku bu kez ters istikameti işaret eder ve evren çok düşük entropi çok yüksek yoğunlukta Büyük Çöküş ile sona erer.
Büyük Patlama’nın daha önceki Büyük Çöküş’lerden meydana geldiği ihtimâlini ortadan kaldırmamasına rağmen, Özellikle evrenin genişlemesinin hızlandığı tespiti ile bilimsel çevrelerde en çok kabul edilen ‘Heath Death’ adı verilen, evrenin en sonunda ısı ölümü ile tamamen son bulabilmesi görüşü olmuştur.
2. Evrenin ısısal ölümü ve Büyük donma teorilerine göre ise sıcak patlama ve kaotik bir karmaşa ile var olan evren zaten soğumaya çalışmaktadır. Evren genişlemeye devam edecek yeteri kadar büyüyünce yoğunluğu aşırı azalacak ve sıcaklığı kararı kadar düşecek, bunun sonunda kutupsal graviteler eşdeğer düzeye inecek ve evren donacaktır. Big Bang’den itibaren 5 milyar yıl geçene kadar evrenin genişleme hızı yavaş yavaş azalıyordu, fakat genişlemeyi sürükleyen karanlık enerjinin varlığı evrenin toplam kütlesini yenerek gittikçe hızlanmaya başladı.