Kategoriler
KPSS Matematik

Üçgende Açı Kenar Bağıntıları Ders Notu ve Konu Anlatımı

Geometrinin üçgende açı kenar bağıntıları konusunda; açının karşısındaki kenar uzunluklarını, dik, dar ve geniş açılı üçgenlerde kenar uzunluğu ilişkisi, çeşitkenar üçgenlerde aynı köşeden çizilen kenar uzunluklarının sıralaması, üçgende açı kenar uzunluğuyla yükseklik, açıortay ve kenarortay arasındaki ilişkileri göreceğiz.

Sponsorlu Bağlantılar

Aşağıda sizler için hazırlamış olduğumuz açı kenar bağıntıları ders notu ve konu anlatımına yapacağınız iyi bir çalışmanın ardından soru çözümlerine başlayabilir ve başarılı sonuçlar alabilirsiniz.

Üçgende Açı Kenar Bağıntıları

Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür.

ABC  üçgeninde  m(A) > m(B) > m(C)
a  >     b     >      c

Terside geçerlidir. Uzun kenarı gören açı kısa kenarı gören açıdan daha büyüktür.

İkizkenar üçgenden de bildiğimiz gibi eşit açıların karşılarındaki kenarlar eşittir.

m(B) = m(C) => |AB| = |AC|m(A) < m(B) = m(C) ise|BC| < |AB| = |AC| olur.
  • Bir üçgende bir tane geniş açı olabileceğinden geniş açının karşısındaki kenar daima en büyük kenar olur.
2. Bir üçgende herhangi bir kenarın uzunluğu diğer iki kenarın uzunlukları toplamından küçük farkının mutlak değerinden büyüktür. ABC üçgeninde

lb – c l <a < (b + c)

Diğer kenarlar için de aynı durum geçerlidir.

|a – c| < b < (a + c) ve |a – b| < c < (a + b) olur.

3. Dik, dar ve geniş açılı üçgenlerde kenarlar arasındaki ilişkiler.

Sponsorlu Bağlantılar

a. Bir dik üçgende kenarlar arasında a2 = b2 + c2 bağıntısı vardır.

b. Dar açılı üçgen b ve c sabit tutulup A açısı küçültülürse a da küçülür.

m(A) < 90° Û a2 < b2 + c3
c. Geniş açılı üçgen b ve c sabit tutulup A açısı büyütülürse a da büyür.

m(A) < 90° Û a2 > b2 + c3
4. Çeşitkenar bir üçgende aynı köşeden çizilen yükseklik, açıortay ve kenarortay uzunluklarının sıralanması,

|AH| = ha ; yükseklik

|AN| = nA ; açıortay

|AD| = Va ; kenarortay

ha< nA <Va

5. Çeşitkenar bir üçgende, açı, açıortay, kenarortay ve yükseklik arasındaki sıralama;

ABC üçgeninde a, b, c kenar uzunluklarıdır.m(A) > m(B) > m(C) olduğuna varsayalım.Bu durumda üçgende

kenarlar : a > b > c

yükseklikler : ha < hb < hc

Açıortaylar : nA < nB < nC

Kenarortaylar : Va < Vb < Vc

şeklinde sıralanırlar. Yani üçgenin yardımcı elemanları kenarlarının sırasına ters olarak sıralanır.

  • Eşkenar ve ikizkenar üçgen için bu sıralamalar geçerli değildir.
6. Bir kenarları ortak olan içiçe iki üçgenden içtekinin çevresi daha küçük olur.

Sponsorlu Bağlantılar
|BD| + |DC| < |AB| + |AC|
  • ABCD bir dörtgen, a, b, c, d kenar uzunlukları [AC] ve [BD] köşegenlerdir.

ABCD dörtgeninde karşılıklı kenarların uzunlukları toplamı, köşegenlerin uzunlukları toplamından küçüktür.

a + c < |AC| + |BD| ve b + d < |AC| + |BD|

köşegen uzunlukları toplamı çevreden daha büyük ve çevrenin yarısından daha küçük olamaz.

  • İç içe şekillerde içteki şeklin çevresi daha küçük olacağından

|DA| + |AB| + |BC|

toplamı |DE| + |EF| + |FC|

toplamından daha büyüktür.

7. ABC üçgeninin içindeki herhangi bir P noktası için;|AP| + |BP| + |CP|toplamı ABC üçgeninin çevresinden büyük, çevresinin yarısından küçük olamaz.

  • Burada Çevre/2 ve Çevre değerleri sınır değer değildir.
Sponsorlu Bağlantılar

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Ne Nedir Vikipedi